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Motivation

» Resilient control systems:

— Task:
* Implement robust cyber-secure environment
* Ensure increased state-awareness.

— Solution:
« Complex system monitoring
- Real-time system behavior analysis

« Timely reporting of the system state to the responsible human
operators
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Hytest System

+ Hytest Chemical Plant Model
— Suitable test-bed for data-fusion system development

— Matlab Simulink model of the INL’'s Hytest process

— Testing facility for hybrid energy systems composed of tightly
coupled chemical processes.

— Interconnected modules, e.g. chemical reactors, heaters,
condensers, storage tanks.

— Over 140 sensory measurements to monitor
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Data Fusion Engine Architecture

* Three-layered systems:
— Conventional min-max bounds
— SOM based similarity computation
— Neural-network based signal prediction
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Self-Organizing Map (SOM) for Anomaly Detection

On-line Processin Knowledge Base

. . Sensory Inputs
 Training on approved normal behavior SR | | —
Alarms Min-Max Based Normal Operation
‘—mﬁ Conditions
* Accurate modeling of multi-dimensional topology of the s e ﬂ p—
. . . User Alarms SOM Anomal Normal Behavior
normal behavior (unlike the min-max bounds) e ool o i
Predf:;i?nfmed ﬂ NN-Based
. e p Normal Behavior
« Self-Organizing Map (1981) e N s el £ Nodel
— Combines unsupervised winner-takes-all competitive learning with cooperative
adaptation

— 2D lattice of neuron position in a fixed grid

Topological
Neurons Connections
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Self-Organizing Map for Anomaly Detection

 Training:
— Input: current measurement, previous measurement and signal gradient
— Learns the multi-dimensional topology of the input data

 Testing:
— Each SOM neuron transformed into a fuzzy rule.

— Each fuzzy rule describes the similarity of an input vector with normal
behavior patterns.

— Gaussian membership function for each fuzzy set
* Mean at the positioned at the neuron
- Spread based on topological neighborhood in the SOM.

— The similarity output computed as the maximum firing strength of all fuzzy
rules.
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Artificial Neural Network for Slgnal Prediction

Artificial Neural Network (ANN) S”S‘ﬁmp‘“s
. . Threshold Based in-Max
— Predicts the near future behavior of T ins [SESmeseeT]. | Nommal Openstion
the Sys tem - Thresholds ] Conditions
Simif;l;ity Based AV 4 SOM-Basec!
ertuce [* S oty | el
— Feed-forward architecture composed of Preditionsased ||
. . Alarms AV 4 NN-Based
multiple interconnected neuron layers. . [Forry M, [N Bascd igaal]_|Norma! Behavior
Synthesis Forecasting Model

— Uses supervised learning based on error-back propagation
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Artificial Neural Network for Signal Prediction

* Models the dynamics of the underlying physical processes
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Input Vector

ANN predicts next k sensory measurements.

Prediction error calculated for each sensor.
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Input vector constructed from m previous sensor measurements

eg.m=3

The predicted measurements retrospectively compared to the real
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Fuzzy Logic based Alarm Generation

« For plant module with 9 sensor the ANN predictor produces 9 prediction errors.
* Fuzzy Logic System (FLS)
— Fuses the alarms into a single robust anomaly indicator
— Input: maximum prediction error and the gradient of the measurement.
— Qutput: the anomaly indicator
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Experimental Results

» Focus on single component of Hytest
— Chemical reactor

* Three considered experimental test cases:
— Normal transient
— Transient with component failure
— Intrusion attempt
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Experimental Results

Normal transient
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Experimental Results

* Transient with component failure
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Experimental Results

* Intrusion attempt
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Conclusion

» Developed Fuzzy-Neural Data Fusion Engine (DFE)
* Integrated the DFE with the Hytest chemical plant model

|t was demonstrated that the DFE improves the state-awareness of the
Hytest plant operator

« The DFE successfully detected component failures as well intrusion
attempts on the control system.

 Future work (currently ongoing research)
— Implement threshold values for alarm generation
— Further refinements of computational intelligence algorithms
— Human factors evaluation of the performance
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